
HWR Firmware/Software Tasks

1

1. Independent set of FF and SP Tables for each cavity

2. Beam Compensation Scheme for CW Mode

3. High Resolution DAQ in CW mode

3. DAQ synchronization with Beam Pulse Trigger

4. Pressure loop implementation in firmware to replace current

hardware based system

5. Resonance Control State Machine Logic to manage RF and

Pressure modes

5/13/2020P. Varghese/S.Raman | HWR Firmware/Software Tasks

CW Mode Beam Loading Compensation

2

Manual

5/13/2020P. Varghese/S.Raman | HWR Firmware/Software Tasks

High Resolution CW Waveform Display

3 5/13/2020P. Varghese/S.Raman | HWR Firmware/Software Tasks

200 kSPS DAQ Stream 1MSPS Waveform

• Store 4 channels instead of 20

• Use for manual Beam

Compensation Tuning

• New DAQ mode is added

RFQ CW Mode DAQ Synchronization Review

4 5/13/2020P. Varghese/S.Raman | HWR Firmware/Software Tasks

RFQ-Buncher1 DAQ Synchronization Review

5 5/13/2020P. Varghese/S.Raman | HWR Firmware/Software Tasks

DAQ System in SOCMFC

6 5/13/2020P. Varghese/S.Raman | HWR Firmware/Software Tasks

CW Mode DAQ Synchronization with Beam

7 5/13/2020P. Varghese/S.Raman | HWR Firmware/Software Tasks

• Beam Pulse Trigger must reset the DMA

controllers and restart the DAQ in a relatively

short time

• Currently a DAQ mode change from Pulse to CW

or FS, triggers a similar reset and restart

• This process is slow allowing wait times of 1 sec

to complete the mode change

• A quicker way must be found with minimal wait

time. This is tinkering with streaming DMA

controllers that have been working reliably.

HWR 8-Cavity Resonance Control

8 4/21/2020P. Varghese/S.Raman | HWR Firmware/Software Tasks

CURRENT SCENARIO

FF_I

FF_Q

SP_I

SP_Q

• FPGA Onchip RAM for Single Cavity , 4x Arrays, each 20,000 words deep, 32

bits wide.

31 15 0

PROPOSED SCENARIO

FF_QA FF_IA

FF_QB FF_IB

SP_QA SP_IA

SP_QB SP_IB

31 15 0

• FPGA Onchip RAM for Two Cavity, 4x Arrays, each 20,000 words deep, 32 bits

wide

• I,Q pairs always change together. Concatenate each 16 bit IQ pair into a 32 bit

word

• No extra memory space needed in FPGA onchip ram.

CHANGES THAT NEED TO BE MADE…

• The only changes required are to be made in the function WRITE_cb_tables, as this is the function that

populates the table in the memory.

• A code snippet of the current scenario is attached below:

• In the current scenario whether a change is made to Cavity A, or Cavity B, it is written to the same table, as

shown two slides back.

CHANGES THAT NEED TO BE MADE…

• The proposed method requires the cavities be populated to separate tables, with I and Q being a part of the

same 32-bit word.

• Therefore, (Q << 16) | I => 32-bit word.

• Code snippet below:

if (par_idx == CA_PLSD_FF_TABLE_I){

for (lcv=0; lcv < TABLE_SIZE; lcv++){

I_Value = (sys->param[CA_PLSD_FF_TABLE_I].tableData[lcv]) & 0xFFFF ; // Mask 16 LSB

alt_write_word((void*)((uint32_t)sys->table_FF_I_base + (uint32_t)(4*lcv)), ((sys-
>param[CA_PLSD_FF_TABLE_Q].tableData[lcv] << 16) | I_Value));

}

printf("FF CA table written\n");

}

if (par_idx == CB_PLSD_FF_TABLE_I){

for (lcv=0; lcv < TABLE_SIZE; lcv++){

I_Value = (sys->param[CB_PLSD_FF_TABLE_I].tableData[lcv]) & 0xFFFF ; // Mask 16 LSB

alt_write_word((void*)((uint32_t)sys->table_FF_Q_base + (uint32_t)(4*lcv)), ((sys-
>param[CB_PLSD_FF_TABLE_Q].tableData[lcv] << 16) | I_Value));

}

printf("FF CB table written\n");

}

